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An Assessment of Some Existing and
Proposed Klein-Nishina Monte Carlo Sampling Methods

by

R. N. Blomquist and E. M. Gelbard

Applied Physics Division
Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

An exact Monte Carlo non-uniform rejection technique is
developed for sampling the Klein-Nishina distributions for scattered
photon secondary energy. This method samples with nearly 100% effi-
ciency at high incident photon energies where other rejection methods
tend to extremely low efficiency. The efficiency and computing speed
is compared with those of other sampling methods. The accuracy of one
approximate method is evaluated by comparing the exact and approximate
probability distribution functions.

*Work supported by the U. S. Department of Energy.
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I. INTRODUCTION

Monte Carlo simulation of photon scattering in a continuous energy domain

requires selection of the secondary energy and the scattering angle cosine (p)

at each scattering collision. The probability density function (p.d.f.) which

describes this distribution is the Klein-Nishina distribution,

-P( x , u ) = [ 11 2 - 1 + x +	 -1 <ii< 1	 (1)

where x is the ratio of a' (the secondary energy in units of electron rest

mass energy) to a (the incident photon energy), C is a normalization constant,

	

and the minimum possible secondary energy is 	 = 1/(1 + 2a). For a given a,

each scattering angle corresponds uniquely to a secondary energy:

	

1	 1
11 = 1 +----.

a ax

In general, the difficulty in sampling the Klein-Nishina p.d.f. stems

from its algebraic complexity and from the radically dissimilar shapes at high

and low energies, as shown in Figures 1 and 2. We shall examine here several

techniques from two distinct classes of Klein-Nishina sampling methods.

II. ANALYTICAL APPROXIMATION

To sample the Klein-Nishina p.d.f. directly, one first eliminates the

scattering angle cosine using Eq. (2) to reduce ii(x,p) to

	

p ( x ) = [	 /Gx	 a-2 E-1	 (a2 _ 2a _ 2) 1 4. 	 1 
X	 a2X2	 •

< x < 1,

(2)

(3)
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Fig. 1 The Klein-Nishina Distribution p(x) for a = 0.002, and the Sample
Distribution (+), q(x), from the Approximate Inverse Method.3
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Fig. 2 The Klein-Nishina Distribution p(x) for a = 200., and the Sample
Distribution (+), q(x), from the Approximate Inverse Method.3



Q Cr) = ao
 + a

l
 r + a

2 
r2 + a

3 r3'1 
0	 r	 1

< x < 1)

(9)

-4-

The c.d.f. is formed by

1
P(x)	 Jr 	 p(x') dx',

Or

1	 1	 1
P(x) = 2 (1 - x 2 )	 — [— (1 - x)	 ( a2 - 2 a - 2) in 

1
-+	 - 1] }/G.
x x

To sample the p.d.f., p(x), directly, one would have to solve the equation

for the c.d.f.,

r = P(x),
	 (6)

for a random number, 0 < r < 1, i.e., one would have to calculate the inverse

function,

x = P-1(r).
	

(7)

To avoid this calculation, one can approximate the inverse,

P-1 (r)	 Q(r).
	 (8)

One such method which has been used in MCNP 2 , 3 approximates P-1 (r) with two

different functions Q i (r), the choice of Q i (r) depending on both the incident

energy and the secondary energy selected. For a < 7/6,

where the coefficients a. are determined by end point conditions on Q and

0' at x = 4 and x = 1. When ct > 7/6, one function approximates P -1 (r) for

x > 0.3,

Q 1 
(r) = a

o
 + a

l
 r + a

2 
r2 + a

3
 r3,	 0 < r < P(0.3)	

(10)
(0.3 < x < 1)

and a second function is used for x < 0.3,
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Q
2

(r) = 0.3 e -A[r - P(0.3)]	
P(0.3) < r < 1

(C < x < 0.3)

The coefficients a.
1

	determined as above at x = 1 and x = 0.3, and the

constant A is determined from the end point condition imposed on Q 2 at x =

Other recipes for Q have also been proposed. 4 , 5,6,7

The accuracy of Eqs. (9), (10), and (11) was tested 3 by calculating

= Q(p(x))

and comparing R. to x for a number of x-values at each incident energy. An

alternative test, however, focuses on the p.d.f., p(x), rather than the c.d.f.

One derives an approximate p.d.f., q(x), from Q(r),

q(x)	 _Ind(d)(rr)], x	 Q(0,	
(12)

and compares it directly with p(x). In this work, p(x) and q(x) were calcu-

lated at 100 secondary energies for each of a wide range of incident energies.

Figures 1 and 2 show the comparisons between p and q at two extreme values of

incident energy. A better perspective on the accuracy is gained by evaluating

the relative errors of q(x), shown in Table 1. Since the purpose of the method

is to sample the p.d.f., the relative error in q(x) is a more reliable indicator

of error than (i"- x)/x.

III. REJECTION SAMPLING

The rejection sampling methods comprise a class of techniques which can

be very powerful for sampling complicated p.d.fs, because the calculation of

the inverse, Eq (7), is unnecessary. The simplest of these is the uniform



Table I. Maximum Magnitude Errors

q(x) - p(x)	 (x - x) 
p(x)	 x

.002 .143 7.6	 x 10-5

.02 .143 8.2	 x 10-4

.2 .151 .011

2. .138 .023

20. .096 .013

200. .123 .028

a
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rejection method. 8 The sampling efficiency, E, or fraction of samples accepted,

is given by

1 
E -

M(1 - E)

where M is the maximum value of p(x) on (E,1). Figure 3 shows E approaching 2/3

as a becomes small, but for large a, M increases and the efficiency tends to zero.

The efficiency of rejection sampling can be improved by drawing candidate

samples from a non-uniform distribution, g(x). If g(x) is simple, its c.d.f.

can be inverted analytically, and if it approximates p(x) well, the efficiency

will be high. Horowitz, et. a1, 9 proposed a linear g(x) which improved the

efficiency by a factor of two over the uniform method, but only at high energies

where the efficiency is prohibitively small (Figure 3).

A more elaborate non-uniform method was developed earlier by Kahn, 8 who

proposed a simultaneous sampling method utilizing two independent component

p.d.f's of a non-linear g(x). The Klein-Nishina p.d.f. is rewritten using the

transformation z = l/x,

1	 2	 1

	

h(z) = --T (P +	 + z - 1),
Kz

where

1	 z
ii= 1 + — - — .

a a

Since both

1
g (z) = —

2 
(

2
II + 

1

Kz

and

g2 (z) =	 (z - 1)
Kz

(13)

(14)

(15)

(16)

(17)
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x Horowitz, et al
o Kahn
- uniform rejection

Fig. 3 Rejection Method Sampling Efficiencies Over a Range of Incident Energies (a).
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are non-negative on 1 < z < 1 they can each be sampled as p.d.fs. After

eliminating p , one draws candidate samples, z, for rejection from either gl

or g 2 with the appropriate probability and then accepts with the probability

h(z) = Kz 2 /[g 1 (z)/K I + g2 (z)/K2 ]. As shown in Figure 3, however, E again

tends to zero for high incident energy photons.

By recasting Eq. 3 in the form,

11	 1p(x) = [x + 
1-+ —1 (1 - —) (— -x ,2	 x	 x

a second approximating p.d.f. is suggested,

g(x) = (x +	 (19)

Since	 1 for small a, g(x) is approximately uniform on 	 < x < 1. For

large a, p(x) - g(x) is very small, and the efficiency tends to 1.0. Equivalent

to sampling from g(x) is sampling from one of the two component p.d.fs of g(x),

1 
g

1
(x) -

1 - c2

with probability

n i =	 (1 - E 2 )/[+ (1 - C 2 ) + in 1],

and from the second component p.d.f.,

g2 (x) =
x ln

for the remainder. Figure 3 constrasts the efficiency at high energy of

Eq. (19) with those of the other methods discussed above.

(18)

(20)

(21)

(22)
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In this work, timing comparisons were made on the IBM 3033 among the

methods discussed above. The computing speeds, shown in Figure 4, are a result

both of the efficiencies and of the number and type of arithmetic operations

required by for each candidate. Although the efficiency of Kahn's method is

lowest over part of the energy range, each candidate sample requires substan-

tially less time to formulate because no special functions (SORT,ALOG, etc.)

must be evaluated. At high energy, however, the efficiency of each method

becomes the dominant influence on computing speed, so the method proposed above

In Eq. (19) is faster than Kahn's. Horowitz's method requires evaluation of

special functions in order to achieve modestly increased sampling efficiency,

and is therefore slower than uniform rejection. It is also apparent from Figure

4 that there is no computing speed advantage gained by using the approximate

inverse method.

IV. CONCLUSIONS

The approximate inverse method used in MCNP samples from a distribution

with substantial approximation errors, but without any corresponding advantage

in computing speed. Improvement of rejection sampling efficiency must require

excessive arithmetic. Kahn's non-linear rejection method is the fastest of

the methods studied up to 10 MeV because the relatively low efficiency is more

than compensated for by the small number of arithmetic operations required per

candidate sample. Above 10 MeV, however, Kahn's low sampling efficiency over-

whelms the arithmetic advantage. Since the proposed rejection method is highly

efficient at high energy, the optimum technique seems to be Kahn's nonlinear

method below 10 MeV, and the proposed rejection method here at higher energies.
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Fig. 4 Computing Speeds of Four Rejection Methods and
an Approximate Inverse Method Over a Range of
Incident Energies (a).



-12-

REFERENCES

1. B. Carlson, "The Monte Carlo Method Applied to a Problem in -ray Diffusion,"

AECU-2857 (1953).

2. Los Alamos Monte Carlo Group "MCNP-A General Monte Carlo Code for Neutron

and Photon Transport, Version 2B," LA-7396-M, Revised (April, 1981).

3. C. J. Everett, E. D. Cashwell, "Approximation for the Inverse of the Klein-

Nishina Probability Distribution," Los Alamos Scientific Laboratory report

LA-4448 (1970).

4. C. J. Everett, E. D. Cashwell, G. D. Turner, "A New Method of Sampling the

Klein-Nishina Probability Distribution of All Incident Photon Energies Above

1 keV," Los Alamos Scientific Laboratory report LA-4663 (1971).

5. C. J. Everett, E. D. Cashwell, G. D. Turner, "A Method of Sampling Certain

Probability Densities Without Inversion of the Distribution Functions," Los

Alamos Scientific Laboratory report LA-5407-MS (1973).

6. C. J. Everett, E. D. Cashwell, -A Monte Carlo Sampler," Los Alamos Scientific

Laboratory report LA-5061-MS (1972), p. 20, C9.

7. C. J. Everett and E. D. Cashwell, "A New Method of Sampling the Klein-Nishina

Probability Distribution for All Incident Photon Energies Above 1 keV (A

Revised Complete Account)," LA-7188-MS (1978).

8. H. Kahn, "Applications of Monte Carlo," AECU-3254, The Rand Corporation

(1954).

9. Y. S. Horowitz, A. Dubi and S. Mordechai, "The Monte Carlo Nonuniform Sampling

Technique Applied to the Klein-Nishina Probability Density Function, - Mud.
Sci. Eng., 60, 461 (1976).



1111	 1111 , 11 ,1111 H


	Fra-tm-139_0001.tif
	Fra-tm-139_0002.tif
	Fra-tm-139_0003.tif
	Fra-tm-139_0004.tif
	Fra-tm-139_0005.tif
	Fra-tm-139_0006.tif
	Fra-tm-139_0007.tif
	Fra-tm-139_0008.tif
	Fra-tm-139_0009.tif
	Fra-tm-139_0010.tif
	Fra-tm-139_0011.tif
	Fra-tm-139_0012.tif
	Fra-tm-139_0013.tif
	Fra-tm-139_0014.tif
	Fra-tm-139_0015.tif
	Fra-tm-139_0016.tif
	Fra-tm-139_0017.tif
	Fra-tm-139_0018.tif
	Fra-tm-139_0019.tif

